If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56x^2+4x-63000=0
a = 56; b = 4; c = -63000;
Δ = b2-4ac
Δ = 42-4·56·(-63000)
Δ = 14112016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14112016}=\sqrt{16*882001}=\sqrt{16}*\sqrt{882001}=4\sqrt{882001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{882001}}{2*56}=\frac{-4-4\sqrt{882001}}{112} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{882001}}{2*56}=\frac{-4+4\sqrt{882001}}{112} $
| (X+13)*3=7x-9 | | -36+6n=4(2+8n)+8 | | 7x-(2×+1)=9 | | 5(4x-5)+3(12-5x)-2(2x+4)=-4 | | 31x+42x=0 | | 7=(x+8)/2 | | -7/6u=-28 | | G(h+2/3)=1 | | w-1/3=-4/5 | | 7(m-2)-6(m+4)=-38 | | -a/8=-24 | | (240+x)/4=75 | | 6/13=3/c | | 2x-11=6/x | | 6/13=3/c,c= | | 5=7w+8w+12 | | -4x+5-3x=26 | | (x-13)(x+3)=8x | | 5a/20=25/15 | | 7x+53=8x-4892 | | 240+x=75 | | 3x/1.025^6-x(1.025)^8=2641.35 | | v62=-27-12v | | 3x-12=x+38 | | (b-4)=(2b+6) | | -2(c-1/5)=-3c | | -|-2+(-a)|+90=-7 | | 15x+2+18x-7=90 | | 5(x+3)-2x=4(2+3x)-5x | | 13-3-h=8-2h | | (-x+5)(x+2)=-18 | | 7(5x-4)-8x=9(3x+2)-4(7-x) |